
1. Introduction

Let X be a linearly ordered set.  Let us call X a linearly ordered topological space (LOTS) if X is

given an order topology.  In this case, the order topology is given by a subbase {]a, → [, ] ←,

b [: a, b∈X }, where ]a, → [＝{x∈X : a < x }, and similarly ] ← , b [＝{x∈X : x < b }.  A LOTS is

denoted by (X, λ) or (X, I ).  A subspace of a LOTS is said to be a generalized ordered space (GO-

space).  A GO-space X inherits the order from a LOTS.  We have another description: Let X be a

linearly ordered set with a Hausdorff topology.  Suppose that at each point, it is given a base of

neighborhoods consisting of convex sets.  The space with this topology becomes a GO-space.  In

the sequel, N denotes the set of natural numbers, and Z the set of integers.  In Section 2, two

linearly ordered extensions X* and L(X) are defined.  It is well known that X is closed in X* and

that X is dense in L(X).  S-normality and Property III are also defined in the section.  Our theorems

are stated in Section 3.  The proofs are given in Section 4.  Two remarks on the conditions in the

theorems are given in the final section.
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Abstract

For a generalized ordered space X, we have two important linearly ordered exten-

sions.  One of them is X* and the other one is L(X ).  X* contains X as a closed subspace,

and was defined by D. J. Lutzer.  L(X ) contains X as a dense subspace, and was defined

by T. Miwa and N. Kemoto.  L(X ) is called the minimal extension of X .  Let X be an S-

normal GO-space or a GO-space with Property III.  In this paper, we show that X* and

L(X ) have such properties under some countability conditions.
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2.  Definitions and theorems

DEFINITION 2.1 Let (X, τ ) be a GO-space, where τ denotes the topology on X.  Two subsets R and

L of X are defined as follows: R＝{x∈X : [x, → [ ∈τ \ λ} and L＝{x∈X: ] ← , x]∈τ \ λ}, where λ
denotes the order topology on X.  A linearly ordered extension X* that contains X as a closed

subset of X* is defined as a subset of X×Z as follows [5]:

X*＝X×{0}∪{(x,－k): x∈R, k∈N }∪{(x, k): x∈L, k∈N}.

Let X* have the lexicographic order.  It is easily seen that X×{0} is a closed subspace of X* and is

identified with X.  The minimal extention L(X) of X is defined as a subset of a Cartesian product

X×{－1, 0, 1} as follows [6]: 

L(X)＝X×{0}∪R×{－1}∪L×{1}. 

Let L(X ) have the lexicographic order topology.  Then X ×{0} is a subspace of L(X ) and is

identified with X.  It is easily seen that X is embedded densely in L(X).  Note that L(X) is not a

subspace of X*.

DEFINITION 2.2 A space X is called S-normal if the following condition is satisfied: Let C be a

closed subset of X.  Then there exists a countable collection {U(n) : n∈N } of open subsets of X

such that for p∈C and q∈X \ C, there exists n∈N such that p∈U(n) and q ∉ U(n).

It is easy to see that a perfect space is S-normal, where a space X is  perfect if every closed

subset of X is a Gδ -subset.  Note that the Michael line is S-normal and is not perfect.  See [1] for

studies of S-normal GO-spaces.  Among the results in [1] is “an S-normal GO-space is hereditarily

paracompact.” Note that if X is an S-normal GO-space, then it is first-countable.

DEFINITION 2.3 A space X has Property III if and only if, for each n∈N, there are an open subset

U(n) of X and a relatively closed discrete subset D(n) of U(n) such that, for a point p and an open

subset G of X that contains p, there exists an n∈N such that p∈U(n) and  G∩D(n)≠0/.

Property III was introduced by H. R. Bennett and D. J. Lutzer [2] to study GO-spaces with

point-countable bases.  They proved that a GO-space with Property III and a point-countable base

is quasi-developable.  It is shown in [2] that a GO-space having Property III is hereditarily

paracompact.  See [3], [4] for some results on Property III.

We state here our theorems.

THEOREM 2.4 Let X be an S-normal GO-space.  If the set R ∪ L defined in Definition 2.1 is

countable, then X* is S-normal.
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THEOREM 2.5 Let X be an S-normal GO-space.  Suppose that X satisfies the following conditions: For

every x∈R, there exists an increasing sequence {xn} with sup {xn}＝x and, for x∈L, there exists a

decreasing sequence {yn} with inf {yn}＝x.  If R∪L is countable, then L(X) is S-normal.

THEOREM 2.6 Let X be a GO-space having Property III.  Then X* has Property III.  

THEOREM 2.7 Let X be a GO-space having Property III.  If R ∪ L is countable, then L(X) has

Property III.

3.  Proofs of the theorems

To prove the theorems, we need technical preparation.  For a convex open subset U of a GO-space

X, we define a convex open subset Ũ of E(X), where E(X) denotes either X* or L(X).  Then eight

cases will occur.  In the following, the intervals must be considered in E(X).

(1) If a is the minimum point of U, then we define Ũ1＝[(a, 0),→ [⊂E(X).

(2) Let a＝ inf U, a ∉ U.  If E(X)＝L(X), then let Ũ1＝](a, 1), → [⊂L(X).  Note that (a, 1) may

not exist in L(X).  If E(X)＝X*, then U1＝](a,＋∞), → [⊂X*.  The meaning of (a,＋∞)

should easily be understood.  

(3) If there is a gap u＝(A, B) such that U∩B＝U, then we define Ũ1＝](u, 0),→ [⊂E(X).

(4) If none of Cases 1－3 occur, then we define Ũ1＝E(X).

(5) If b is the maximum point of U, then we define Ũ2＝]← ,(b, 0)]⊂E(X).

(6) Let b＝sup U, b ∉ U.  If E(X)＝L(X), then let Ũ2＝]← , (b,－1)[⊂L(X).  Note that (b,－1)

may not exist in L(X).  If E(X)＝X*, then let Ũ2＝]← , (b,－∞)[⊂X*.  The meaning of

(b,－∞) also must be understood.

(7) If there is a gap v＝(A, B) such that U∩A＝U, then we define Ũ2＝]← ,(v, 0)[⊂E(X).

(8) If none of Cases 5－7 occur, then we define Ũ2＝E(X).

We set Ũ＝Ũ1∩ Ũ2.  Ũ is called the convex open set associated with U.  Let U be an open set of

a GO-space X.  Then U is decomposed into a union of open convex subsets {Uα : α∈A}.  In this

case, we define Ũ＝∪{Ũα : α∈A}, where Ũα is the convex open set associated with Uα .  Then Ũ is

an open subset of E(X).

Proof of Theorem 2.4 Let S＝R∪L＝{si : i∈N} be an enumeration for R∪L.  Let C be a

closed subset of X*, p∈C and q∈X* \ C.  We consider two cases.

Case 1. Assume that C∩(X×{0})＝0/.  For a point (si, k)∈X* with si∈S, let U+(si, k)＝](si, k), →

[ and U_(si, k)＝] ← , (si, k)[, where the intervals are considered in X*.  By the assumptions, we

can write p＝(si, k) for some si∈S and k∈Z \ {0}, where Z denotes the set of integers.  If q < p,

then it is clear that p∈U+(si, k－1) and q ∉ U+(si, k－1).  If p < q, then we have p∈U_(si, k＋1)

and q ∉ U_(si, k＋1).  Hence {U+(si, k), U_(si, k): si∈S, k∈Z, (si, k)∈X*} is a required collection of

countable open subsets of X*.
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Case 2. Suppose that C∩X≠0/, where X is identified with X ×{0}.  Since C∩S is closed in X

and since X is S-normal, there exists a countable collection {U(n): n∈N} of open subsets of X

such that, if x∈C∩X and y∈X \ C, then there exists n∈N such that x∈U(n) and y ∉ U(n).

Then, a countable collection {Ũ(n): n∈N }∪{U+(si, k), U_(si, k): si∈S, k∈Z, (si, k)∈X*} of open

subsets of X* witnesses the S-normality of X*, where Ũ(n) denotes the open subset of X*

associated with U(n) defined at the beginning of this section.  To show this, we consider two

cases.  (1) Let π(q)∈S, where π : X*→X denotes the projection to the first factor. Then q＝(si, k)

for some si∈S and k∈Z.  If q < p, then we have p∈U+(si, k) and q ∉ U+(si, k).  If p < q, then we

have p∈U_(si, k) and q ∉ U_(si, k).  (2) Suppose that π(q) ∉ S.  Let E＝X \ (R∪L).  Then it is clear

that q∈E⊂X×{0}.  (i) Let p＝(si, k)∈X* with si∈S and k≠0.  If q < p, then we have p∈U+(si,

k－1) and q ∉ U+ (si, k－1).  If p < q, then we have p∈U_(si, k＋1) and q ∉ U_(si, k＋1).  (ii) Let p

∈E⊂X×{0} or p＝(si, 0) with si∈S.  Then p∈C∩X and q∈E \ C.  Hence there exists n∈N

such that p∈U(n) and q ∉ U(n).  Thus p∈Ũ(n) and q ∉ Ũ(n).  This completes the proof.

Proof of Theorem 2.5 We use the notation in the proof of Theorem 2.4.  Let C be a closed

subset of L(X), p∈C and q∈L(X) \ C.  We shall consider two cases.

Case 1. Let C∩X＝0/.  Let z＝(si, ε ) be a point of L(X)∩(X×{－1, 1}).  By the assumption of

the theorem, there exist two monotone sequences {xk (si)} and {yk (si)} such that si＝sup {xk (si)}＝

inf {yk (si)}.  If ε＝－1, we set V_(si, k)＝] xk (si), z], an open interval in L(X).  For ε＝1, then we set

V+(si, k)＝[z, xk (si)[.  Now let p∈C and q∈L(X) \ C.  If p＝(si, －1) and p < q, then we have p∈

V_(si, 1) and q ∉ V_(si, 1).  Let p＝(si,－1) and q < p.  Since π (q) < si, there exists xk(si)∈X such

that π (q) < xk (si) < si, where π : L(X)→ X is the projection to the first factor.  Hence p∈V_(si, k)

and q ∉ V_(si, k).  For the case of p＝(si, 1), the proof is done analogously.  Hence {V+(si, k), V_(si, k):

si∈S, k∈N } assures the S-normality of L(X).

Case 2. Suppose that C∩X≠0/.  Since C∩X is closed in X, there exists a collection of countable

open subsets of X {U(n): n∈N } such that, if x∈C∩X and y∈X \ C, then there exists n∈N such

that x∈U(n) and y ∉ U(n).  Then, a countable collection {Ũ(n): n∈N }∪{V+(si, k), V_(si, k): si∈S,

k∈N}∪{U+(si, ε), U_(si, ε): si∈S, ε＝±1, (si, ε)∈L(X)} of open subsets of L(X) guarantees the

S-normality of L(X).  To prove this, we consider three cases.  (1) Let π (q)∈S.  Then q＝(si, ε)

for some si∈S and ε∈{－1, 0, 1}.  If q < p, then p∈U+(si, ε) and q ∉ U+(si, ε).  If p < q, then

p∈U_(si, ε) and q ∉ U_(si, ε).  (2) Let π (q) ∉ S.  Then q∈E⊂X ×{0} as shown in the proof of

Theorem 2.4.  If p＝(si, ε), where ε∈{－1, 1}, then the proof is similar to Case 1.  (3) Let p∈E⊂X

×{0} or p＝(si, 0) with si∈S.  Then we have p∈C∩E and q∈E \ C.  There exists n∈N such

that p∈U(n) and q ∉ U(n).  Hence p∈Ũ(n) and q ∉ Ũ(n).  This completes the proof.

Proof of Theorem 2.6 Let X be a GO-space having Property III.  Let {U(n), D(n): n∈N} be the

countable collection given in Definition 2.3 that guarantees Property III of X.  Let Ũ(n) be the open

subset of X* associated with U(n).  Then it is easy to see that D(n) is relatively closed discrete in

Ũ(n).  Set Ũ(0)＝{ x∈X*: {x} is open in X*} and D(0)＝Ũ(0).  Then the countable collection {Ũ(n),

D(n): n ≥ 0} will guarantee Property III of X*.  To prove this, let p∈G, where G is open in X*.  If p
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is isolated, we take Ũ(0) for which we have p∈U(n) and G∩D(0)≠0/.  Let p be non-isolated. Then

p∈X×{0}.  Since G∩X is an open set of X that contains p, there exists n∈N such that p∈U(n)

and D(n)∩G∩X≠0/.  It is clear that p∈Ũ(n) and G∩D(n)≠0/ by the construction of Ũ(n).

Proof of Theorem 2.7 Let X be a GO-space having Property III.  Therefore, there exists a family

{U(n), D(n)} that guarantees the property.  Let S＝R∪L＝{si : i∈N } be the enumeration for

R∪L.  We define a countable collection {L(si, ε), P(si, ε): si∈S, (si, ε)∈L(X)}∪{U(n, k), D(n, k):

n∈N, k∈N} that will guarantee Property III of L(X).  For (si, ε)∈L(X) with si∈S, let L(si, ε)＝

L(X) and P(si, ε) ＝{(si, ε)}.  Take U(n)⊂X stated above and consider a convex subset W of U(n) \

S that is open and maximal in X, where the convexity is considered in X, and the maximality is in

the sense that if W´ contains W as a proper subset, then W´∩S＝0/.  Such W ’s are countably many

and we enumerate such subsets as {U(n, k): k∈N }.  Let E＝X \ (R∪L).  It is clear that U(n, k) is

open in L(X), because U(n, k)⊂E.  We define D(n, k)＝D(n)∩U(n, k).  It is obvious that D(n, k)

is closed discrete in U(n, k).  Then we can show that the countable collection

{L(si, ε), P(si, ε): si∈S, (si, ε)∈L(X)}∪{U(n, k), D(n, k): n∈N, k∈N }

guarantees Property III of L(X).  To prove this, let p∈G, where G is a convex open subset of L(X).

If p＝(si, ε) for some si∈S, then it is clear that p∈L(si, ε) and G∩P(si, ε)≠0/.  Let p∈X \ S.  Then

p∈E⊂X.  If G∩X contains a point of S, say si, it is obvious that p∈L(si,0) and G∩P(si, 0)≠0/.

Hence we may assume that G∩X∩S＝0/.  Therefore, p∈G∩X⊂E.  Since G∩X is an open set

of X that contains p, there exists n∈N such that p∈U(n) and D(n)∩G∩X≠0/.  Since p∈U(n)∩

G∩X⊂E and G∩X is convex in X, there exists k∈N such that p∈U(n, k) and D(n, k)∩G∩

X≠0/.  Therefore, it follows that p∈U(n, k) and D(n, k)∩G≠0/.  This completes the proof.

4. Remarks

REMARK 4.1 Theorems 2.4, 2.5 and 2.7 do not necessarily hold if we drop the assumption of the

countability of S＝R∪L as the following examples show: (i) Let ω1 be the set of countable ordinals

with the usual order.  This is a LOTS, but it is not paracompact.  Consider X＝(ω1, discrete), a GO-

space on ω1 with the discrete topology.  Since X is metrizable, X is S-normal and has Property III.

In this case, R is the set of limit ordinals of ω1.  Therefore, |R| > ω.  Since L(X) is homeomorphic to

ω1, L(X) is neither S-normal nor does it have Property III by the comments after Definitions 2.2

and 2.3.  (ii) Let SS＝( RR, S ) be the Sorgenfrey line.  Since SS is perfect, it is S-normal.  Since R＝RR, it

is not a countable set. Then X* is not S-normal. To show this, let C＝{(x, 0) : x∈RR}.  Then C is a

closed subset of X*.  However, there does not exist a countable collection of open subsets of X*

that separates points (p, 0) of C and points (p,－1)∈X* \ C.

REMARK 4.2 There are no relations between S-normality and Property III as the following

examples show.  (i) Let X be the Souslin line with a point-countable base.  It is consistent that such

space exists.  It is known that it is perfect, hence S-normal.  However, it does not have Property III,
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because of Theorem 1.5 in [2].  (ii) Let X be the unit square I 2 with the lexicographic order-

topology.  It is shown that I 2 has Property III in [2].  However, this is not S-normal.  To show this,

let C＝ I ×{0, 1}.  It is obvious that C is a closed subset of I 2.  Then there is no countable

collection of open subsets of I 2 that separates points of I×{1} and points of I×{1/2}.
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