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Properties Concerning Dense Subsets of
Sorgenfrey Spaces and Michael Spaces

Masami HOSOBUCHI

Abstract

In this paper, we investigate the linearly ordered topological spaces and their
Sorgenfrey spaces, and study four properties concerning dense subspaces of such
spaces that were introduced by H. R. Bennett, D. J. Lutzer and S. D. Purisch. As a
result, we show that if a linearly ordered space has Property 1V, then so does its
Sorgenfrey space. In the fourth section, we prove theorems concerning such properties
and the weak perfectness of the Michael spaces.

Key words : Properties I, II, Il and 1V, linearly ordered space, Sorgenfrey space,
Michael space, weak perfectness.

1. Definitions of the four properties concerning dense subsets

The following definitions were given in [BLP]. (See also [H2]). For a generalized ordered
space (GO-space) X that has one of the properties in the definitions, we have a fact : the density of
X =the cellularity of X. A GO-space is defined as a subspace of a linearly ordered topological space.
(See Section 2).

Definition 1. A topological space X is said to have Property lif and only if there exists a o -
closed discrete dense subset D of X, thatis, D=0{D(n) : n O N } is a dense subset of X such that
D(n) is a closed discrete subset of X for every n0 N. N denotes the set of natural numbers.

Definition 2. A space X is said to have Property Il if and only if there is a dense metrizable
subspace of X.

Definition 3. A space X is said to have Property Ill if and only if, for each nO N, there are an

open subset U(n) of X and a relatively closed discrete subset D (n) of U(n) such that, for a point p
and an open subset G of X that contains p, there exists an n0 N such that p0 U(n) and Gn D(n)
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# @ (Seealso [BL], [H1]).

Definition 4. A space X is said to have Property IVif and only if there exists a - relatively
discrete dense subset D of X, thatis, D=0 {D(n) : n O N} is a dense subset of X such that D(n) is
a relatively discrete subspace of X for every n0 N. “Relatively discrete” means “discrete as a
subspace”.

2. Linearly ordered spaces and Sorgenfrey spaces

Let (X, <) be a linearly ordered set. We can consider two topologies on (X, <). One of them is
a linearly ordered topological space (LOTS) and the other is a Sorgenfrey space. A LOTS (X, <, I)
has the order topology defined by <, that is, a basic open neighborhood of x in the LOTS is of the
form Jy, z[, where y < x< z. The order topology is often called the interval topology. That is the
reason why the letter | is used. A basic open neighborhood of xin a Sorgenfrey space (X, <, S) is
of the form [x, y[, where x<y. We usually abbreviate (X,<, 1) as (X,1),and (X,<,S) as (X, S).
We also write (X, <) as X.

It is interesting to consider the relationship between (X, 1 ) and (X, S), where X is a linearly
ordered set. In this paper, we investigate whether the following statement is true: if (X, 1 ) has
Property P, then so does (X, S) and vice versa, where P is one of the four properties I, 11, 111, and
IV defined in the first section.

The following two lemmas are necessary to prove Proposition 1.

Lemma 1. Let X be a linearly ordered set and(X, S) the Sorgenfrey space. Let D #xO X: {} is
open in (X, S)}. Then there exists a subset S of X D such that S =0 {S, : o 0 A}, where
(1) Sq is a convex, open subset ofX, S) for everya O A. (S, is said to be convex, if x <y < z with x, z
0 Sy, thenyd Sg).
(2) San Sg=¢@ foraz .
(3) SO Dis adense subset of X, S).

Proof. If D is a dense subset of (X, S), then we set S = @. Suppose that D is not dense in
(X, S). Let x4 D. Then, the following two cases occur.
Case 1. Any neighborhood of x contains a point of D.
Case 2. There exists yO X such thatx<y, [x, y[ # @and [x y[n D= q.
Consider Case 2 first to construct S, = [%,, Y« [, we shall consider the following four cases:
(i) if] «,x[n D=q thenlet Ix,,x[ =] —, x[. (ii) if there exists max (] —, x[ n D), then we set X,
= the successor of max (] —,x[ n D). (iii) if there exists sup(] —, x[ n D) in XO D, then we set X, =
sup(] «,x[n D). (iv) ifsup(] —,x[ n D) is agap, then we set x, = the gap. Next we explain how
to choose y,: letyZ D, %0 yand ] %,y [n D=¢.
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(i) if [y, ~ [n D =@ thenlet [y, yi[ = [y, — [. (ii) if there exists min([y, — [n D), then let y, =
min(ly, — [n D). (iii) if there exists inf([y, — [n D) in XO D, then lety, = inf([ly, - [n D).
(iv) if inf([y, - [ n D) is a gap, then we set y, = the gap. Now, let S, = [X,, V4[ and S =
0 {S, : a A}. Then we can easily show (1) and (2) stated in the lemma. To prove (3), xO XO
(SO D). Note that x# X, If x =Y,, there are infinitely many points of [y,, — [n D. So any
neighborhood of y, meets D. If xis distinct from X, y,, then by Case 1 above, any neighborhood of
X contains a point of D. This shows (3) and completes the proof of Lemma 1.

Lemma 2. Let D be a countable subset of a Sorgenfrey spaéX, S). Then D is metrizable.

Proof. Let D ={d,: nO N} be a countable subset of X. Let B(n, m) ={[d,, d.[}, where d, < dj.
It is easy to see that B =0 {B(n, m) : (n,m) O Nx N}is a base for (D, S D). Each family
B (n, m) consists of a single element, so it is discrete. Hence B is a o-discrete base for the space
(D, S |D). By the Bing's Metrization Theorem, (D, S |D) is metrizable. This completes the proof.

The following are results concerning Properties Il and 1V for a Sorgenfrey space, although
Proposition 1 is a partial result. On the contrary, it is unknown if we have a similar result for
Property Il1l. See Examples 1 and 2 in the third section for Property |I.

Proposition 1. Let (X, S) be a Sorgenfrey space If every (S, , S | S,) is separable then (X, S)
has Property Il where §/’s are defined in Lemmal and S |S, denotes the topology on,3nduced byS.

Proof. Since (S, , S |S,) is separable, there exists a countable dense subset T, of (S, , S |S4)
for every a0 A. Hence (T,, S |T,) is metrizable for every a0 A by Lemma 2. It follows from
Lemma 1 that {T, : o0 A} and D are mutually disjoint. Set T =0 {T,: a0 A}. Since T, 1%, Vul
forevery a0 A, it is easy to see that T D is a topological sum of {T,: a0 A}and D. Hence TO
D is metrizable. Since TO Disdensein (SO D,S|SO D) andSO Disdensein (X,S), TO Disa
dense subset of (X, S). Therefore, (X, S) has Property II. This completes the proof.

Remark 1. Let R be the set of real numbers. Then D = {x0 R : {x} is open in (R, S)} is empty.
Hence S = R by Lemma 1. Since the Sorgenfrey line (R, S) is separable, it has a dense metrizable
subspace (Q, S|Q) by Lemma 2, where Q is the set of rational numbers. This justifies the
assumption of separability in Proposition 1.

Theorem 1. If (X, I ) has Property IV, then so doesX, S).
Proof. LetD=0{D(n) : nO N} be a o-relatively discrete dense subset of (X, I ). Let
D(0) ={xO XO D:Ja,x[ # ¢ for any a < x, and there exists y> x such that ]x, y[ = ¢},

and D'=D0O D(0). Then D'is a dense subset of (X, 1 ). To prove this, let x be a point of X0 D',
and [x y[ a neighborhood of xin (X, S). If Ix y[ is not empty, then Ix y[n D# @. Hence [x y[ n
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D'# @. If ]x y[ is empty, then there exists a < xsuch that ]a, y[ = {5}, because if ]a, x[ # @for any
a < x then xO D(0). Hence xO D'. This contradicts the assumption xZ D'. Hence {X} is open in
(X, I') and xO D. Since x does not belong to D', this case does not occur. It is clear that D(n),
n O 1, is relatively discrete in (X, S). Since for each xd D(0), {x} is open in (X, S), D(0) is
relatively discrete in (X, S). Hence D'is a o-relatively discrete dense subset of (X, S). Therefore,
(X, S) has Property IV. This completes the proof.

3. Miscellaneous counterexamples

Example 1. Evenif (X, I ) has Property I, (X, S) does not necessarily have Property I:
We consider a lexicographically ordered set X = [0, 1]x {0, 1}. Since (X, | ) is separable, it has
Property I. But, (X, S) has [0, 1] x {0} as a dense discrete subset. Hence it is not perfect (see
Definition 5 in Section4). Since a GO-space with Property | is perfect, it does not have Property .

Example 2. Evenif (X, S) has Property I, (X, | ) does not necessarily have Property I
We consider X = w,, the set of countable ordinals. It is clear that (X, S) is discrete, hence it has
Property I. Since (X, I) is not paracompact, it does not have Property I.

Example 3. Even if (X, S) has Property I, (X, I ) does not necessarily have Property II:

Let X = 1“hx {0, 1} be a lexicographically ordered set, where 1} itself is ordered lexicographically.
Then (X, S) has Property Il. Itis clear that 1x {0} is a dense, discrete subset of (X, S). Hence
1“1x {0} is a dense metrizable subspace of (X, S). To prove that (X, 1 ) does not have Property I,
it is sufficient to show that (X, | ) is not first countable at any point. As was proved in [BLP], for a
GO-space X, if X has a dense metrizable subspace D, then X is first countable at each point of D.
Lets= (s, S, ..., &, ...; 0) O 190 x {0}. If there exists an increasing segence {s, : n0 N}in (X, 1)
that converges to s, then there exist countably many points of 1“tx {0} that converge to s. As is
well known, 1°t is not first countable at any point. This is a contradiction.

Example 4. There is another example to provide the same situation as Example 3:
Let X be a linearly ordered topological space (LOTS) defined in [BL], Example 5.5. X has
Property |1, but it is not first-countable at any point of X. Precisely,
x={(a, ..., 0, w0, W, W, ...)0 [0,0]° 0<w,i=12, ..,nnd0}
where if n =0, then (&) = (w,, W, W, ...) is asingle point. Let
X(n) ={x0O X: the length of xis n},
where the length of x= (a, ..., A, @;, W;, W,,...) isnifd,<w. Then X =0{X(n) :n 0O 0}. Since
each X(n) is relatively discrete in (X, 1 ) as shownin [BL]. Hence X (n) is also relatively discrete
in (X, S). We show that every X (n) is a closed subset of (X, S). Let xO XO X(n). Ifn=0,itis
easy to prove that. So let n > 0. Let xO X(i), 0<i<n. Ifx=(ay, ..., O, Wy, ... W, W, &), then
lety= (0 ...,0; +1,0,...,0, @, &)). Itiseasy to show that [x, y[n X(n) =@ Next, letxOd X(i),
i >n. For x= (ay, ..., O, W;, W, Wy, ...), lety= (ay,..., 0, + 1, 0, Wy, W,,...). Then [x y[n X(n) =
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@. Hence X(n) is a closed discrete subset of (X, S). Therefore (X, S) has Property I. Hence it
has Property 1I. Since (X, 1 ) is not first-countable at any point, it does not have Property Il as
proved in [BLP].

Remark 2. X(n) in Example 4 is not necessarily a closed subset in (X, I ). For example,
consider X (2) and a point x= (w, &3,) that does not belong to X(2). We can show that for any y[I
X, y<x ly, xIn X(2) # @ Lety= (ay, ..., o, &,) be less than x Case 1: let o, = . Then, 0, < W.
To see this, suppose that 0, = w,. Then for all i > 1, d,= w,. Hence y = x This contradicts y < x
Letz= (0, 0, + 1, &,). ThenzO X(2) and y<z<x Hence ]y, x] n X(2) # ¢. Case 2: leta, < .
Theno,=nON. Letz= (0, +1,0a,,&,)0X(2) andy<z<x Hence ]y, xI n X(2) # ¢ Case 3:
the case O, >w does not occur because y< x. This completes the proof.

Example 5. Even if (X, S) has Property Ill, (X, I ) does not necessarily have Property III:
Let X = w,. Then (X, S) is discrete. Hence it has Propety I1l. Because (X, I ) is not paracompact,
it does not have Property |11 by Proposition 4.2 in [BL].

Example 6. Even if (X, S) has Property IV, (X, I ) does not necessarily have Property IV:
Let X = 1®hx {0, 1} be a lexicographically ordered set, where 1“1 itself has the lexicographic order.
It is clear that a subspace S = 11x {030 {(1, 1, ..., 1; 1)} is open, relatively discrete in (X, S). We
show that S is a dense subset of (X, S). Let

1) =W, ...,Yas...; 1) and (0) = (z,, ..., 24, ... ; 0)

be points of 1®1x {0, 1} that (y, 1) < (z, 0). Since y <z, there exists a < w, such that y, < z, and ys =
zzforB<a. Let (u,0) = (y, ..., Uy ... ; 0), where y, < u, < z,. Hence (y, 1) < (u, 0) < (z,0).
Therefore, (u,0)0 [(y, 1), (z,0)[. Hence (X, S) has Property Il, and hence (X, S) has Property
IV. Suppose that (X, | ) has Property IV. Since (X, 1 ) is a compact LOTS, it has Property 1l by
Corollary 4.7 in [BLP]. Then (X, I ) is first-countable on a dense subset D. But, neither 1'x {0}
nor 1“1x {1} is first-countable at any point. Hence (X, 1 ) does not have Property IV.

4. Four properties and the weak perfectness of Michael spaces

Let P be a subset of the unit interval X = [0, 1]. We topologize X as follows: for each point p[J
P, {p} is open and for each point x(0 X[ P, we agree to endow the usual Euclidean neighborhoods.
This space is written M(P) and is said to be a Michael space. The letter M stands for the topology
of M(P), and E is used for the usual Euclidean topology on [0, 1] through the remaining of the
paper.

Theorem 2. Any Michael space MP) has Properties 11, 11l and 1V.

Proof. About Property II: if P is dense in X = [0, 1], then it is easy to see that M(P) has
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Property Il. Suppose that P is not a dense subset of X. Then, by Lemma 1, we can write X0 P =
0{S, : a0 A}, where S, is an open convex subset of [0, 1] for every o O A. Since [0,1] is
hereditarily separable, there exists a countable dense subset D = {d, : n0 N} of XO P. Let B(0) =
{p}: pO P}, and B(n, m) = {1d,0 (1/m), d,O (1/m) [} for each (n, m)J Nx N. Then we can
easily show that
B=B(0)O (O0{B(n,m): (n,m)0 Nx N})

is a o-discrete base for DO P . Hence DO P is a dense metrizable subspace of M(P) by the Bing’s
Metrization Theorem. Hence M(P) has Property Il. About Property Ill: it is sufficient to show
that M(P) is quasi-developable by Lemma 3.4 and Proposition 1.6 in [BL]. In fact, B is a quasi-
development. To show that, let xbe a point of an open set U, where x @ DO P. Then there exists
(n, m)Od Nx N such that xO ]d,0 (1/m), d,0 (1/m) [0 U. 1f xO DO P, then it is easy to get a
similar consequense. Since the quasi developability means the existence of a g-minimal base,
M(P) has Property 11l by [BL] (see also [H]). It is shown in [BLP] that Property Il (or III)
implies Property IV. This completes the proof of Theorem 2.

The notion of weak perfectness was introduced by L. J. Kog€inac [K]. Before the discussion ,
we give the definition and a theorem that are needed to prove our result. Theorems 3 and 5 were
announced in [BHL], but an explicit proof was not given in the paper, so we give a direct proof for
the sake of convenience.

Definition 5. A topological space X is called weakly perfect if and only if, for every closed
subset C of X, there exists a dense subset D of C such that D is a G; -subset of X. If we can take
D =C, then X is said to be perfect.

Theorem 3. Suppose that M(P) is weakly perfect. Then, for anf -closed subset C of0, 1] such
that CO Pis E-dense in C, Pn C is a first category subset of O(The converse is also true.

Proof. Let C be an E -closed subset of [0, 1] such that C 0 Pis E -densein C.LetC*=C O P.
Then C* is an M -closed subset of M(P). Since M(P) is weakly perfect, there exists an M -dense
subset S of C* that is an M -G;-subset of M(P), say, S = n {G(n) : nO N}, where G(n) is an E -
open subset of M(P) for every nO N. Let

H(n) = {xO C:there exists, t0 R such that s<x<tand ]s t[ n [0,1]0 G(n)}.
Then, it is easy to see that H(n)O G(n) and that H(n) is a relatively E -open subset of C. We
show that H(n) is E -dense in C. Let ]a, bl n C be a non-empty E -open subset of C. Since CO P is
E -dense in C, we have Ja,b[n (CO P) # @ Since Sis M-denseinC*=C 0O P, Ja,b[n (COP)
nS# @ Takeapointyd Ja, b[n (COP)n S . Hence yO SO G(n) for every n0 N. Note that
G(n) is M -openin M(P). Since yiZ P, there exist y;, y,[0 R such thaty, <y <y, and ]y, [ n [0, 1]
0 G(n).Since yO C, yd H(n). Hence ]a, b[n C n H(n)# . That shows that H(n) is E -dense
in C. Since n {H(n) :nO N}J n {G(n) : nO N}=S0O CO P, it follows that
PhrCcOCO[n{H(n):nON}=0{(COH():nON}
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It is clear that CO H(n) is relatively E -closed in C and nowhere dense in C. Therefore, Pn Cisa
first category subset of C. The proof of the converse statement will be given in Theorem 5, below.

In the following theorem, let P denote the set of irrational numbers in [0, 1]. Hence M(P) is
the usual Michael line.

Theorem 4. Let P be the the set of irrational numbers ih0, 1]. Then M(P) is not weakly perfect.

Proof. Suppose that M(P) is weakly perfect. Take a closed set C = [0, 1]. Then CO P is dense
in C, because P is the irrational numbers in [0, 1]. Hence, by Theorem 3, Pn C is a first category
subset of C. This means P is a first category subset of [0, 1]. This contradicts a well known fact.

The following is the converse to Theorem 3.

Theorem 5. Suppose that for anyE -closed subset of0, 1] such that CO PO C is E -dense in C,
Pn Cis afirst category subset of C. Then MP) is weakly perfect.

Proof. Let C be a M -closed subset of M(P). Let K, =CI(CO P, [0, 1]), the E -closure of CO P
in [0, 1]. ThenK,O (CO P)O P. To show this, let xbe a point of K, (CO P). Suppose that XZ P.
Since xO K;, V(X)n (CO P)# @ for any E -neighborhood V(x). Hence V(x)n C# @. Since Cis M
-closed in M(P) and xZ P, xO CI(C, M(P)) = C. Hence xO CO P. This contradicts that x0 K;O
(CO P). Hence we can write K, = (CO P)O P', where P' is a subset of P. To see that K,O P O
K, is E -dense, let xO K, and V(x) a neighborhood of xin [0, 1]. Then V(x)n (CO P)# @. Since
COPOKOP V(Xn (KOP)# @. Hence K,O Pis E -dense in K;. By the assumption, Pn K, is
a first category subset of K. Hence Pn K is contained in O {(F(n) : nO N }, where F(n) is E -
closed in K, and nowhere dense in K,. Since K, F(n) is relatively E -open in K, and E -dense in
K, by the Baire Category Theorem, O {K, F(n) : nO N} is E -dense in K,, because K, is compact
in [0, 1]. Notethat (Pn K)n (K,OO{F(n) :nO N}) =@ Therefore,

Pn K)n (n{K,OF(n) :nON}) =@
That means n {K;O F(n) : nO N} does not contain any point of P. Let
D=(Pn C)O [n{K.OF(n) :nO N}.

Then DO C. To see this, let xO n {K,O F(n) : nO N}O K,. Since xZ P, any M -neighborhood of
xis a Euclidean. Hence for any neighborhood V(x) of x, we have V(x)n (CO P)= ¢, and hence
V(x)n C# @. Therefore, xO CI(C, M(P) )= C, where CI (C, M(P)) denotes the M -closure of C in
M(P). We now show that D = (Pn C)O [n (K,OO{F(n) : nO N}] is M -dense in C. To see
this, let xO CO D. Note that xiZ P. Let V(x) be an E -neighborhood of x. Since xO K, and n {K,0
F(n):nO N}isE-densein K, V(x)n (n {K;O F(n) :n0O N})=@. Hence V(x) n D = @. This shows
that D is M -dense in C. We show next that D is an M -G;-subset of M (P). Since K; is E -closed in
[0, 1], we may write K, = n {W(m) : mO N }, where W(m) is E -open in [0, 1] for every mO N.
Since K, F(n) is E -open in K;, we may write K, F(n)=U(n) n K;, where U(n) is E -openin [0,
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1] for every nO N. Hence
KiOFn) =Un)n [n{W(m) :mO N} =n{Un)n W(m) mON}
Hence
D=(Pn C)O [n{KOFM :nON}=PnC)T[nn{UnnW(m:nON mON}.
Since U(n) n W(m) is E -openin [0,1], itis also M -open in M(P). Since Pn Cis clearly M -open
in M(P),sois (Pn C)O (U(n)n W(m)). Hence
D=nn{(PnC)O (U(n)n W(m))) :nON,mO N}
is an M -G;-subset of M(P). This completes the proof.

Remark 3. We do not need to assume that C is dense-in-itself in Theorems 3 and 5, although it
was assumed in [BHL]. Since CO P is E -dense in C, no points of Pn C are E -isolated. So the
reflections to E -isolated points are not needed when we consider Pn C.

5. Questions

The author does not know the answer to the following question:

Question. Let P be one of Properties Il and 111, and suppose thatX, 1 ) has P. Does (X, S) have
P?
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